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Abstract—This paper describes SMARTMAP, an oper- on the same node. Unfortunately, the current schemes
ating system technique that implements fixed offset virtual for using shared memory for MPI can require either

memory addressing. SMARTMAP allows the application gy cessive memory-to-memory copies or potentially large
processes on a multi-core processor to directly access each heads inflicted by th i t oS
other's memory without the overhead of kernel involve- overheads inflicted by the operating system (OS).

ment. When used to implement MPI, SMARTMAP elim- In order to avoid the memory copy overhead of MPI
inates all extraneous memory-to-memory copies imposed altogether, more and more applications are exploring

by UNIX-based shared memory strategies. In addition, mixed-mode programming models where threads and/or
SMARTMAP can easily support operations that UNIX- o mpiler directives are used on-node and MPI is used

based shared memory cannot, such as direct, in-place fi-node. Unfort telv. th lexity of shared
MPI reduction operations and one-sided get/put operations ofi-node. Unfortunately, the complexity or shared mem-

We have implemented SMARTMAP in the Catamount OFy programming using threads has hindered both the
lightweight kernel for the Cray XT and modified MPI  development of applications as well as the development
and Cray SHMEM libraries to use it. Micro-benchmark  of thread-safe and thread-aware MPI implementations.
performance results show that SMARTMAP allows for = e jnitial attractiveness of mixed-mode programming
significant improvements in latency, bandwidth, and small t d by the additi | lexity ind d b
message rate on a quad-core processor. was tempered by the additional compiexity Inauced by
finding multi-level parallelism and by initial disappoint-

I. INTRODUCTION ing performance results [1], [2], [3]. Recently, however,

As the core count on processors used for highinpublished data on mixed-mode applications suggest
performance computing continues to increase, the p&rore encouraging results on multi-core processors.
formance of the underlying memory subsystem becomesIn this paper, we introduce a scheme for using fixed-
significantly more important. In order to make effectiv@ffset virtual address mappings for the parallel pro-
use of the available compute power, applications wiflesses within a node to enable efficient direct access
likely have to become much more sensitive to the way #hared memory. This scheme, called Simple Mapping
which they access memory. Applications that are merff Address Region Tables for Multi-core Aware Pro-
ory bandwidth bound will need to avoid any extraneou@amming, or SMARTMAP, achieves a significant per-
memory-to-memory copies. For many applications, tHeérmance increase for on-node MPI communications
memory bandwidth limitation is compounded by the fac@nd eliminates all of the extraneous memory-to-memory
that the most popular and effective parallel progran¢opies that shared memory MPI implementations incur.
ming model, MPI, mandates Copying of data betweePMARTMAP can also be used for more than MPI.
processes. MPI implementors have worked to make u$emaps very well to the partitioned global address
of shared memory for communication between process#gace (PGAS) programming model and can be used to

implement one-sided get/put operations, such as those
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gether. Explicit message passing is an alternative to shared
The main contributions of this paper are: memory for intra-node data sharing. In message pass-
« an OS virtual memory mapping strategy that allowig, processes pass messages carrying data between
direct access shared memory between processesome another. No data is shared directly, but rather is
a multi-core processor copied between processes on an as necessary basis. This
« a description of how this strategy can be used f@liminates the need for re-entrant coding practices and
on-node data movement between processes orcateful updates of shared data, since no data is shared.
multi-core processor The main downside to this approach is the extra overhead
« a detailed analysis of the performance impacts @ivolved in copying data between processes.
using this strategy for MPI peer communication, In order to accelerate message passing, memory map-
MPI collective communication, and Cray SHMEMping is often used as a high-performance mechanism for
data movement operations moving messages between processes [4]. Unfortunately,
The rest of this paper is organized as follows. Theuch approaches to using page remapping are not suf-
next section provides background on the current aficient to support MPI semantics, and general-purpose
proaches to using shared memory for intra-node dz@ferating systems lack the appropriate mechanisms. The
movement. In Section Ill, we describe the implemersender must copy the message into a shared memory
tation of the SMARTMAP and its advantages over othéggion and the receiver must copy it out — a minimum
approaches. Section IV provides a detailed descripti®f two copies must occur. It would be ideal if messages
of the enhancements that we have made to MPI ag@uld be moved directly between the two processes with
SHMEM implementations on the Cray XT to use it2 single copy. This would be possible if all processes
Section V presents performance results using sevefdlerated entirely out of the shared memory region, but
micro-benchmarks. Relevant conclusions of this pap#Hs would amount to the processes essentially becoming
are summarized in Section VI, and we close by dighreads, with all of their inherit problems. Furthermore,

cussing possible avenues of future work in Section VImessage passing APIs such as MPI allow message
buffers to be located anywhere in an address space,

including the process’s data, heap and stack.
POSIX-based operating systems generally supportas of MPI 2.0, MPI applications may make use
shared memory capability through two fundament®f both threads and memory mapping, although few
mechanisms: threads and memory mapping. Unlike prgtp| implementations provide full support for threads.
cesses, which allow for a Single execution context inSiqﬂore Comm0n|y, MPI imp|ementations utilize memory
an address space, threads allow for multiple executigfapping internally to provide efficient intra-node com-
contexts inside a single address space. When one thr@aghication. During MPI initialization, the processes on
updates a memory location, all of the threads sharing thenode elect one process to create the shared memory
same address space also see the update. A major drgMgion and then the elected process broadcasts the in-
back of threads is that great care must be taken to ensfggmation about the region to the other processes on
that common library routines are reentrant, meaning thgfe node (e.g., via a file or the sockets API). The
multiple threads could be executing the same piece gfher processes on the node then “attach” to the shared
code simultaneously. For non-reentrant functions, somgemory region, by requesting that the OS map it into
form of locking must be used to ensure atomic executiotheir respective address spaces.
The same is true for data accessed by multiple thread3\|0te that the approach of using shared memory for
— updates must be atomic with respect to one anotherigfra-node MPI messages only works for the point-to-
else difficult to debug race conditions will occur. Rac@oint operations, collective communication operations,
conditions and fundamentally non-deterministic behavigihnd a subset of the MPI-2 remote memory access
make threads difficult to use correctly. operations. Copying mandates active participation of
In memory mapping, cooperating processes requesf@ two processes involved in the transfer. Single-sided
shared region of memory from the operating system apglt/get operations, such as those in the Cray SHMEM

then map it into their private address space, possibly abgogramming interface, cannot be implemented using
different virtual address in each process. Once initidlizepoS|X shared memory.

a process may access the shared memory region in

exactly the same way as any other memory in its privafe !ntra-Node MPI

address space. As with threads, updates to shared datahere are several limitations in using regions of shared
structures in this region must be atomic. memory to support intra-node MPI [5], [6], [7]. First,
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the MPI model doesn'’t allow applications to allocatés one such example [9]. The obvious drawback of this
memory out of this special shared region, so messaggsproach is the additional cost of this hardware.

must first be copied into shared memory by the senderA comprehensive analysis of the different approaches
and then copied out of the shared region by the receivésr intra-node MPI communication was presented
This copy overhead can be a significant performandge [10]. More recently, a two-level protocol approach
issue. Typically there is a limitation on the amount ofhat uses shared memory regions for small messages and
shared memory that a process can allocate, so the MP$ support for page remapping individual buffers for
implementation must make decisions about how to mdsirge messages was proposed and evaluated [11]. There
effectively use this memory in terms of how many perhas also been some recent work on optimizing MPI
process messages to support relative to the size of dwlective operations using shared memory for multi-core
contents of each message. The overhead of copyiggstems [12].

messages using shared memory has led researchers to

explore alternative single-copy strategies for intra€0@3, |ntra-Node Communication on the Cray XT

MPI message passing. o
All communication between processes on the Cray XT

One such strategy is to use the operating system i@e the Portals [13] data movement layer. Two imple-
perform the copy between separate address spaces [§niations of Portals are available for the SeaStar [14]
In this method, the kemel maps the user buffer intQaqyork. The default implementation is interrupt driven
kernel space and does a single memory copy betweghy a| portals data structures are contained inside the
user space and kernel space. The drawback of thSerating system. When a message arrives at the SeaStar,
approach is that the overhead of trapping to the k&f jnterrupts the Opteron host processor, which then
nel and manipulating memory maps can be expensiRspects the message header, traverses the Portals data
Another limitation is that all transfers must be serialized;;,ctures and programs the DMA engines on the SeaStar
through the operating system. As the number of COrgs geliver the message to the appropriate location in
on a node increases, serialization and managementyof o jication process’ memory. This implementation is
shared kernel data structures for mapping is likely to B&¢arred to as “Generic Portals” (GP) because it works
a significant pe_rformance Iimitation. Another importanfy, poth Catamount on compute nodes and in Linux
drawback of this approach is that there are two MRJ, service and 1/0 nodes. The other implementation
receive queues — one in the MPI library and one in thg,norts 4 complete offload of Portals processes and uses

kernel. When the application posts a non-specific receiyg interrupts. When a message arrives at the SeaStar, all
using MPI _ANY_SOURCE, great care must be taken 10yt the portals processing occurs on the SeaStar itself.

insure that the atomicity and ordering semantics of MRi,js implementation is known as “Accelerated Portals”
are preserved. Thereis a po_tentlal race for a non-s.pecka:P) and is available only on Catamount, largely due to
receive request to be satisfied by both the MP!I libragye simpiified address translation that Catamount offers.
and the_ operating system. Managing at_0m|C|ty t_)e_tweenFor intra-node transfers, the Generic Portals imple-
events in kernel space and user space is non-trivial. mentation takes advantage of the fact that Portals struc-

Another strategy for optimizing intra-node transfers itures for both the source and destination are in kernel
to use hardware assistance beyond the host processspace. The kernel is able to traverse the structures and
The most common approach is to use an intelligent perform a single memory copy to move data between
programmable network interface to perform the transfgsrocesses, since all of user space is also mapped into
Rather than sending a local message out to the netwdeknel space. At large message sizes, it becomes more
and back, the network interface can simply use its DMAfficient for the kernel to use the DMA engines on the
engines to do a single copy between the communic&eaStar to perform the copy, so there is a crossover
ing processes. The major drawback of this approaploint where it switches to using this approach. For
is serialization through the network interface, which ithe Accelerated Portals implementation, all Portals data
typically much slower than the host processor(s). Alsgfructures are in SeaStar memory, so it must traverse
large coherent shared memory machines typically hatleese structures in the same way it does for incoming
hardware support for creating a global shared memomgtwork messages, so there is little advantage to intra-
environment. This hardware can also be used wheode transfers. In fact, intra-node transfers are slower
running distributed memory programs to map arbitrargoing through the SeaStar rather then the operating
regions of memory to provide direct shared memorgystem, due to the speed of the host processor (2+ GHz)
access between processes. SGI's NUMAIlink hardwarelative to the network processor (500 MHz).



1. SMARTMAP | MPLEMENTATION

static void initializesharedmemory( void )

extern VAPMLAT_ENTRY *xKN_pml4_table_cpu[];

1
2
. . . . 3
SMARTMAP is a virtual memory mapping technique 4 int cpu;
R 5 for( cpu=0 ; cpu< MAX_NUM_CPUS ;cpu++ ){
that allows for direct access shared memory between :
8

VA_PMLAT_ENTRY = pml4 = KN_pml4_table_cpu[ cpu ];
. . . if( !'pmld )
the processes running on a multi-core processor. This

continue ;

. .. 9 KERNEL_PCB.TYPE * kpcb = (KERNEI_PCB.TYPEx) KN_cur_kpch_ptr[cpu];
technique leverages many of the characteristics of a if(_tkpch ) continue;
| a . 11 VA_PMLAT_ENTRY dirbase ptr = (VA_PMLAT_ENTRY)
lightweight compute node kernel to achieve shared mem- 12 | (KVTOP( (size.t) kpch>kpcb_dirbase ) | PDEP | PDEW | POV );

.y . . . . int other;
ory capability without the limitations of POSIX shared 4 for( other=0 ; otheeMAX_NUM.CPUS ; other++ ){
. . . . 15 VA_PMLAT_ENTRY * other_pml4 = KN_pml4_table_cpu[other];

memory mapping or the complexity of multi-threading. 16 it( totherpmi4 ) continue;

17 otherpml4[ cpu+l ] = dirbaseptr;

SMARTMAP preserves the idea of running a single 18 }

execution context within a separate address space, but 2 3

also provides the ability to easily access the address

space of the other execution contexts within the same Fig. 1: SMARTMAP kernel code
parallel job on the same node. The following provides a
description the implementation of SMARTMAP and its
advantages over existing approaches for intra-node data
movement.

static inline void= remoteaddress( unsigned core,
volatile void * vaddr)

uintptr_t addr = (uintptrt) vaddr;
addr |= ((uintptr_t) (core+1))<< 39;
return (void«) addr;
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A. Catamount

The Catamount lightweight kernel [15] is a third-
generation compute node operating system developed
by Sandia National Laboratories along with Cray, Inc.,
as part of the Red Storm project [16]. Red Storm is
the prototype for what has become the commercially
successful Cray XT line of massively parallel processing
systems. Catamount has several unique features thdtresses in the ran@&0 to 0x007FFFFFFFFF. The
are designed to optimize performance and scalabili¥86-64 architecture supports a 48-bit address space, so
specifically for a distributed memory message passintiiere are 512 entries in the PML4.
based parallel computing platform. Each core writes the pointer to its PML4 table into an

One such important feature is memory managemeatray at core 0 when a new parallel job is started. Each
Unlike traditional UNIX-based operating systems, Cataime the kernel enters the routine to run the user-level
mount does not support demand-paged virtual memapyocess, it copies all of the PML4 entries from each core
and uses a linear mapping from virtual addresses it@to the local core. This allows every core on a node to
physical pages of memory. This approach can potentiabige every other core’s view of the virtual memory across
have several advantages. For instance, there is no néesl node, at a fixed offset into its own virtual address
to register memory or “lock” memory pages involvedpace. Figure 1 shows the 20 lines of kernel code that
in network transfers to prevent the operating systemmplement direct access shared memory in Catamount.
from unmapping or remapping pages. The mapping Another feature of Catamount is that the mapping
in Catamount is done at process creation time and d$ virtual addresses for the same executable image is
never changed. This greatly simplifies translation andentical across all of the processes on all of the nodes.
validation of virtual address for the network interfaceThe starting address of the data, stack, and heap is the
Virtual address validation is a simple bounds check arshme. This means that the virtual address of variables
translating virtual addresses to physical addresses isvih global scope is the same everywhere. The Cray
simple offset calculation. SHMEM environment refers to such addressesyas

The SMARTMAP approach for direct access sharemetric addresses, whereas other addresses, such as those
memory takes advantage of Catamount’s simple memaaifocated off of the stack as the application is running,
management model, specifically the fact that Catamouante termed to baon-symmetric. Figure 2 shows the user-
only uses a single entry in the top-level page table malgvel function for converting docal virtual address into
ping structure (PML4) on each X86-64 (AMD Opterora remote virtual address for a process on a different
or Intel EM64T) core. Each PML4 slot covers 39 bitzore. Symmetric addresses combined with this simple
of address space, or 512 GB of memory. Normallyemote address translation function make it extremely
Catamount only uses the first entry covering physicabsy for one process to read or write the corresponding

Fig. 2: User function for convert-
ing a local virtual address to a
remote virtual address
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data structure in another process’ address space running
on a different core of the same processor.

Catamount’'s memory management design is much
simpler than a general-purpose OS like Linux. Linux
memory management is based on the principle that pro-
cesses execute in different address spaces and threads ex-
ecute in the same address space. Most architecture ports,
x86 included, maintain a unique set of address translation Fig. 3: SHMEM Put Function
structures (e.g., a page table tree on x86) for each process
and a single set for each group of threads. SMARTMAP
operates differently in that a process’s address space ?—('dCray SHMEM
associated translation structures are neither fully-umiq ) ) )
or fully-shared. For example, SMARTMAP on the x86_ ' "€ Cray SHMEM library was first available on the
architecture maintains a unique top-level page table (thé@y T3 series of machine circa 1994. It supports a
PML4) for each process: however, all processes shard@i€ty of one-sided get/put data movement functions as
common set of leaves linked from this top-level taplaVell as coIIectlye reduction functlons and remote atomic
Linux memory management does not support this forf€Mory operations, such as atomic-swap and fetch-and-
of page-table sharing, so each process must be giveflgrement. _
replicated copy of each shareable leaf. This results in | "€ €xisting implementation for Catamount on the
more memory being wasted on page tables (2 MB pg[ray XT uses Portals_f_or a.II data movement opgranons.
GB of address space on x86) and a larger cache footpraifnilar to MPI's profiling interface, Cray has imple-
than necessary. Modifications to Linux to support sharif§€ntéd an alterative library interface to all SHMEM
a single page table entry for shared memory mappgdpcuons to support user-level redefinition of library

regions has been proposed, but the changes have rtines. All functions are defined as weak symbols with
been accepted in the mainline kernel. a set of shadow functions whose names are prefaced by

a 'p’. For example, the library defineshirem put ()
as a weak symbol and definpshnem put () as the
actual function. This makes it possible for an application

SMARTMAP is currently limited to what the top- to define it's own version of the function that in turn calls
level X86-64 page table supports — 511 processes (die underlying library function. This mechanism makes
slot is needed for the local process) and 512 GB dfeasy to extend the implementation to use SMARTMAP
memory per process. However, this will likely be suffor intra-node transfers.
ficient for a typical compute node for the foreseeable At library initialization time, we determine which
future. Since Catamount only runs on X86-64 proceslestination ranks are on the local node. We do this
sors, SMARTMAP is currently limited to this processousing information from the Catamount runtime sys-
family as well. However, the concepts are generallgm that conveys the rank, node id, and core of each
applicable to other architectures that support virtugrocess in the job. We actually use the SMARTMAP
memory. For example, even though the PowerPC usegpability for each process on a node to determine a
an inverted page table scheme that is very different frogtobal rank to core rank mapping. Once this mapping
x86-64, the hardware’s support for segmentation can ksedetermined, we simply add logic to each function to
used to implement SMARTMAP just as efficiently. Ordetermine whether the destination process is on-node
other architectures with software-based virtual memoryr off-node. For on-node communications, we use the
support (i.e., a software managed translation look-asidlistual address conversion function to determine the
buffer), SMARTMAP is straightforward to implement. remote virtual address to use and then perform the

appropriate operation. If the destination rank is off-
IV. USING SMARTMAP node, we fall through to the actual function. Figure 3
shows the implementation of thehnem put men()

We have used the SMARTMAP capability in Cataroutine using SMARTMAP. We have done this for the
mount to optimize intra-node data movement for thbasic put and get operations in order to measure the
Cray SHMEM one-sided operations, as well as for MRderformance gain from SMARTMAP. Implementations
point-to-point and collective operations. This sectioof the strided get/put operations as well as the atomic
describes the modifications to these libraries. memory operations would be similarly straightforward.

void shmemputmem( void xtarget, void xsource, sizet length, int pe )
int core;

if ( (core = smappe_is_local(pe)) '=—1) {
void xtarget.r = (void =)remote address( core, target );
memcpy( targetr, source, length );

} else {
pshmemputmem( target, source, length, pe );

RPoOOONOUAWNE
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Changes to the internal implementation of the collectiieansfers, but it has since been extended to support both
operations would be needed to differentiate between omm-node and off-node communication. This implementa-
node and off-node data movement. tion has two posted receive queues — one inside Portals
. . I for off-node transfers and one inside the MPI library for
B. MPIPoint-to-Point Communication on-node transfers — so it is subject to the same Corﬁplex-
We have modified the Open MPI implementation t@y that other such implementations are. In particular,
make use of SMARTMAP. We chose Open MPI becausfyn-specific receives are not currently fully supported.
it is the only open-source implementation that suppor{g g receive request usinyPl _ANY_SOURCE cannot
shared memory that already has support for the Cra¢ immediately completed, a failure is returned. We
XT. Recently, Cray has released an implementation gfe currently extending the implementation to handle
MPI for their compute node Linux environment thathis situation. We do not expect this extra logic to
supports shared memory. However, this implementatigfye a significant impact on performance, especially for
is encumbered with SGI contributions and is not avaitommunication micro-benchmarks and codes that do not
able outside of Cray. Cray is continuing to maintain @mploy a large number of wildcard receive requests.
completely separate MPI implementation for Catamount, key difference between the BTL and MTL im-
which is also not available as open source. The modulglementations is that the BTL is able to copy user
component-based architecture of Open MPI also simpiata along with the MPI envelope information, allowing
fies the introduction of a new transport layer. for short send operations to complete before the data
There are two different paths that Open MPI can Uggys actually been transfered to the receiver's buffer.
for MPI point-to-point communications using Portalsgjyen that the focus of SMARTMAP s to decrease the
The default path is to use a PML module that implemengg,mber of memory-to-memory copies, we chose not to
MPI matching semantics inside the MPI library an@mploy this optimization for the MTL. Therefore, short
uses the underlying Byte Transport Layer (BTL) tGnessages using SMARTMAP are synchronous — the data

simply move bytes. This layer can make use of severglonly copied when the matching receive buffer has been
BTL modules at one time, including shared memoryosted.

or the network as appropriate for the destination. The
second path is for the PML to use a Matching Transpo@t, MPI Collective Communication
Layer (MTL). This path assumes that the underlying

module is responsible for implementing MP| matChmg%ication module that uses SMARTMAP to implement the

semantics. Unlike the BTL, there can only be one :
. . : . arrier, broadcast, reduce, allreduce, and alltoall celle
these modules in use at any given time. An important . . . . .
L : . tive operations. We briefly describe the implementation
distinction between these two paths is the location

the MP.I receive queue. For the BTLs, the MP| FeCeVE The SMARTMAP collective module uses a structure
gueue is inside the library, but for an MTL, the receive - S o
: . . containing the following information:

gueue is managed outside of the MPI library.

We modified both the shared memory BTL in Open ¢ counter
MPI as well as the Portals MTL to use SMARTMAP, ¢ context
This approach allows us to better quantify the advantage® addr ess
of avoiding an extra copy in the shared memory BTL. * turn

Relatively few changes were necessary to allow the finished
shared memory BTL to use SMARTMAP. Rather than This structure is globally-scoped so that it is at the
having the individual processes useap() to map the same memory location in all of the processes on a
same block of shared memory, the core O process onde. The first two itemsgount er and cont ext,
a node simply publishes the location of the block adire specific to the MPI communicator involved in the
memory that it has allocated from its local heap. Usingollective operation. Since MPI collective operations are
SMARTMAP, the other processes read this location fromlocking, a process can be participating in at most one
core 0’'s memory and convert it to the appropriate remot®llective at a time. The communicatoount er is
address. incremented each time a collective operation is started

More extensive changes were required to enable thad the cont ext is used to identify the specific
Portals MTL to use SMARTMAP. A detailed descriptioncommunicator that is being used. This prevents sub-
of a prototype of this implementation can be foundommunicators in overlapping collective operations from
in [17]. The prototype only had support for intra-nodénterfering with each other.

We have also created an Open MPI collective commu-



When a process enters a collective operation, it fireéduce followed by a broadcast. The alltoall operation is
determines whether it is the root of the collectivémplemented as a broadcast with each process taking
operation, For non-rooted operations, the root defaulisrns being the root. The current implementation of
to rank O within the communicator. Once the root islltoall is cache friendly, since all cores are copying the
determined, the process determines the core on whishme buffer at the same time. An alternative implemen-
the root process is running. If a process is not the rodgtion could allow for each process to copy its chunk of
it gets the remote address of the collective structure in thata to the other processes.
root process’ address space and waits forcthant er
andcont ext val_ues to indi_cate that the root has entered V. PERFORMANCE EVALUATION
the same collective operation.

For the barrier operation, the root process initialize. Test Environment

the fini shed value to 1, sets theounter and The platf dt th ‘ its |
cont ext values appropriately, and then spins on this € plattorm used o gather our periormance resutts 1s

value waiting for it to be equal to the size of the commu Red Stgrm deéel?pmentvsvysthem thagdccang/lniég_ﬂ:bz
nicator. Once the non-root processes enter the collect@(!:—|Z quad-core Lpterons. We have adde

operation, they increment thfei ni shed value in the c_apab|I|ty to the Catamount N-Way (CNW) kemel ver-

root’'s address space using an assembly language atoid! 2.0.41. Our changes to Open MP| were performed

increment operation. As with the root, they also spiﬂn the head of the development tree.

waiting for this value to be equal to the size of the For intra-node results, we limited our results to the
communicator interrupt-driven version of Portals because it is more

. . .efficient at intra-node transfers. The ability to have the

For the broadcast operation, the root process again 'glf)erating system perform a copy between processes
tializes thef i ni shed value to 1 and sets treddr ess :

alue to the location of the user buffer. It then a.toutperforms having the SeaStar adapter do the copy. Due
vaiu ' u utier. Wall%s limitations of the SeaStar, send operations must go

for the other processes to increment theni shed through the OS, so in addition to serializing requests

value. _Once the non-root processes ent_er the Co"eCt%erough a slower network interface, requests must also
operation, they read thaddr ess value in the other be serialized through the OS

process’ address space, convert this value to a remote
address, and then copy the data from the source buffer
directly to the destination buffer in its address spac8: SHMEM

When the copy 1 complete, the process atomically Figure 4 shows the ping-pong latency and bandwidth
increments thé i ni shed value. performance for a Cray SHMEM put operation using the
For the reduce operation, the root process firglefault implementation and the SMARTMAP-enabled
copies the send buffer to the receive buffer (provideghplementation as measured with the NetPIPE [18]
the MPLIN_PLACE flag is not used), initializes thepenchmark. Single-byte latency for the default imple-
fini shed value to 1, and initializes theur n value mentation is more than &s, while the SMARTMAP
to 0. It sets thecont ext and counter values, and |atency is 230 ns. Bandwidth performance for the
then proceeds as the non-root processes do. Once in $dARTMAP-enabled SHMEM also significantly out-
collective operation, a non-root process recognizes thgrforms the default implementation, having a much
destination address and converts it to a remote addregSeper curve and achieving much higher asymptotic
in the root core’s address space. It then waits for thgsrformance. The erratic nature of the bandwidth curve
t urn value to be equal to its rank. Once this occur$gr the SMARTMAP-enabled SHMEM is due to the
the process performs the reduce operation with the Bgnsitivity of the memory sub-system to misalignment
buffer and the root's buffer. When the reduce operatiogs a result of the various transfer lengths that NetPIPE
is complete, it atomically increments theur n value yses. The dip at 32 KB is repeatable and is also likely
to let the next rank proceed, and atomically incremenggie to the memory hierarchy, since this is half of the
the fi ni shed value to indicate that it is done. Whensijze of the first-level cache. We used a memory copy
the root process’ turn is up, it simply increments thggutine with non-temporal stores, which we believe is
counter to let the following rank proceed. As with thgesponsible for the jump in bandwidth performance at 2
other SMARTMAP collectives, the root waits for themp. For SHMEM over Portals, the crossover point from
fi ni shed value to reach the size of the CommunicatOUSing shared memory to using the network is C|ear|y

Currently, the allreduce operation is implemented aswasible at 512 KB.



® [stmem-smap —— ‘ ‘ ‘ enabled MTL is able to outperform the others, peaking
at 9.4 GB/s. This is significantly higher than the peak
5.7 GB/s of the Portals MTL without SMARTMAP. We
al 1 can also see that the performance of the shared memory
BTL starts to be affected by doing two memory copies
rather than one. Unlike the previous SHMEM bandwidth
test that uses NetPIPE, the IMB bandwidth test does
not actually read the receive buffer, so the improved
| performance of MPI over SHMEM is due to cache
Py effects.
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o 10 100 7000 Figures 5(c) and 5(d) show performance for the IMB
(aM)L;;n‘:y) Sendrecv and I_Exchange benchmgrks. We chose these
benchmarks to illustrate the capability of SMARTMAP
2500 : : : : : : : to allow for simultaneous communications within
a node. The Sendrecv benchmark measures perfor-
2o | | mance between pairs of processes communicating with
the MPI _Sendr ecv() function, while the Exchange
ol X”J | benchmark measures the performance of exchanging
4 data with a pair of neighbor processes. The Portals
/ BTL and MTL are limited by serialization through the
ll / | OS, while with the shared memory based transports,
/*" the processes are able to communicate without any
4 | serialization. We can also see the penalty that the two-
/ e copy shared memory strategy has for these operations as

;
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Message Size (bytes)

(b) Bandwidth Another important measurement of MPI point-to-point

. ) performance is message rate. We used the PathScale
Fig. 4: SHMEM Put Performance (now QLogic) MPI message rate benchmark, which is
a modified version of an MPI bandwidth benchmark
. . from Ohio State University. The original benchmark
C. MPI Point-to-Point was enhanced to support reporting message rate as

Figure 5 shows the performance of widely-used Intelell as bandwidth, to calculate and report the'/2
MPI Benchmark suite version 2.3 for the point-to-poininessage size and rate, and to allow for running multiple
operations. We compare the default Portals BTL (btl-gprocesses per node to calculate aggregate performance.
and MTL (mtl-gp) with the shared memory BTL (btl-sm)Figures 6(a) and 6(a) show the message rate for one
using SMARTMAP and the SMARTMAP Portals MTL pair of communicating processes and two pairs of pro-
(mtl-smap). cesses respectively. For one pair, the shared memory

Ping-pong latency performance is shown in FigBTL is able to achieve more than 3.5 million messages
ure 5(a). The Portals MTL with SMARTMAP is ableper second, while the Portals MTL with SMARTMAP
to achieve a zero-byte latency of 630 ns, with the sharedhieves about 2.4 million message per second. The
memory BTL using SMARTMAP slightly higher at 830 non-SMARTMAP layers achieve less than 300 thousand
ns. This is a significant improvement over thesPortals messages per second. The memory copies in the shared
MTL, where the OS performs the memory copy betweememory BTL allow for decoupling the sender and the
the processes. The difference in performance between teeeiver. For short messages, the BTL is able to copy
MTL and BTL is likely due to the additional memorythe message into shared memory and, from the MPI
operations needed by the BTL to enqueue a requgsrspective, the send is complete. However, since the
in a shared data structure. For the MTL, each proceSSIARTMAP MTL is synchronous, it does not perform
has exclusive access to the data structures necessaryttiermemory copy until the receiver has posted a receive
enqueing a request. request. The overhead of this synchronization degrades

Ping-pong bandwidth performance is shown in Fignessage rate performance, but the single-copy ability of
ure 5(b). Here again we see that the SMARTMAPSMARTMAP eventually catches up at larger message
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Fig. 5: IMB MPI Point-to-Point Results

sizes. For two pairs of processes, message rate far MPI Collectives
the MTL scales nearly linearly, almost doubling to 4.6
million messages per second, while the BTL rate remains

constant. The message rate actually decreases slightly fofiigure 8 shows performance for the broadcast, reduce,

the Portals-based transports. allreduce, alltoall, and barrier MPI collective operagon

on a single quad-core node. This graph also includes per-

formance of the SMARTMAP collective module (smap-

We finish our analysis of MPI point-to-point commu-coll). As with the point-to-point operations, we can

nication with a halo exchange benchmark from Argonregain see the significant performance gain for using
National Lab. We ran this benchmark across four qua@MARTMAP. For the broadcast and alltoall operations
core nodes using sixteen processes. The results arerigures 8(a) and 8(d) respectively, we can also see
shown in Figure 7. Unlike the intra-node performancthe advantage that the single copy approach has for
results, this benchmark shows the advantage of the AdPger message sizes over the two-copy approach of the
version of Portals. The Portals MTL with SMARTMAP shared memory BTL. Barrier performance in Figure 8(e)
enabled allows for efficient on-node transfers, while théemonstrates the advantage of using a counter in shared
AP implementation of Portals allows for more efficienmemory rather than using message passing in shared
off-node transfers. memory.
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VI. CONCLUSION

The SMARTMAP capability in Catamount is able to
deliver significant performance improvements for intra-
node MPI point-to-point and collective operations. It is
able to dramatically outperform the current approaches
for intra-node data movement using Portals on the Cray
XT. We expect the shared memory BTL performance
to be similar to what Cray’s Compute Node Linux
(CNL) environment could achieve using shared memory
in Linux. However, we have also shown that the single-
copy ability of SMARTMAP in Catamount is able to
significantly outperform the mulitple-copy approach that
must be used in a POSIX-based shared memory envi-
ronment like Linux. Additionally, SMARTMAP can sup-
port operations that Linux shared memory cannot. First,
SMARTMAP can eliminateall extraneous memory-to-
memory copies for intra-node MPI communications.
This is a significant advantage in light of the growing
memory bandwidth limitation of multi-core processors.
SMARTMAP can also support true one-sided get/put
operations and extremely efficient collective operations,
including the ability to perform reduction operations
directly on the destination buffer.

VIl. FUTURE WORK

There is more work left to do to fully utilize the
SMARTMAP capability for MPI. First, because the
Portals data movement layer encapsulates the MPI
posted receive queue, the complexity of handling
MPI _ANY_SOURCE receives is significantly increased.
The current implementation does not fully support non-
specific receives, but we do not expect the logic needed
to support them to significantly impact performance.
We would also like to implement single-copy non-
contiguous data transfers and MPI-2 remote memory
access operations.

We are currently working on additional collective op-
erations for the SMARTMAP collective module, specif-
ically the gather operations. We would like to do an
in-depth analysis of collective performance using Open
MPI's hierarchical collective module, where on-node
collectives would use the SMARTMAP module in com-
bination with a network-based collective module.

With the recent release of a Cray implementation of
MPI for CNL that supports shared memory transfers,
we would like to do an in-depth analysis of on-node
MPI communication performance between Catamount
and CNL.

Once we have complete point-to-point and collective
layers, we would also like to perform and in-depth analy-
sis of application performance. Our current 4-node quad-
core environment is not sufficient to analyze application

10
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performance and scalability. The center section of theg]
Red Storm system, approximately six thousand nodes,
will soon be upgraded to quad-core processors, and we
expect to perform an exhaustive analysis of applicationg]
as part of the upgrade. It would also be interesting
to measure SMARTMAP performance on larger corgg
counts, such as a dual-socket quad-core Cray XT5 node.

SMARTMAP is also a natural fit for implementation
of the Partitioned Global Address Space (PGAS) Model.
The implementations of Unified Parallel C, Co-Array [6]
Fortran, and Global Arrays could be enhanced to lever-
age SMARTMAP capabilities.

We are also exploring ways for applications to use thé7]
SMARTMAP capability directly, through library inter-
faces that allow processes to do direct remote loads and
stores. We currently have MPI applications that are con8]
ducive to recoding pieces of them to use shared-memory
style communications. The advantage of SMARTMAP
for this is that we can avoid the memory copy overheadp]
of using MPI and also avoid the complexity of mixing
MPI with threads or OpenMP compiler directives. [10]

Finally, we are also considering exposing the topology
of the underlying machine to applications using MPI
communicators. We can easily create communicatqtg)
to be used for on-node or off-node communications
(e.g, MPI _COVM NCDE and MPI _COVM NET). Some
applications may be able to decompose communication
into two levels to better leverage the advantages of intrd=]
node communication performance.
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